Gene Pathways That Delay Caenorhabditis elegans Reproductive Senescence
نویسندگان
چکیده
Reproductive senescence is a hallmark of aging. The molecular mechanisms regulating reproductive senescence and its association with the aging of somatic cells remain poorly understood. From a full genome RNA interference (RNAi) screen, we identified 32 Caenorhabditis elegans gene inactivations that delay reproductive senescence and extend reproductive lifespan. We found that many of these gene inactivations interact with insulin/IGF-1 and/or TGF-β endocrine signaling pathways to regulate reproductive senescence, except nhx-2 and sgk-1 that modulate sodium reabsorption. Of these 32 gene inactivations, we also found that 19 increase reproductive lifespan through their effects on oocyte activities, 8 of them coordinate oocyte and sperm functions to extend reproductive lifespan, and 5 of them can induce sperm humoral response to promote reproductive longevity. Furthermore, we examined the effects of these reproductive aging regulators on somatic aging. We found that 5 of these gene inactivations prolong organismal lifespan, and 20 of them increase healthy life expectancy of an organism without altering total life span. These studies provide a systemic view on the genetic regulation of reproductive senescence and its intersection with organism longevity. The majority of these newly identified genes are conserved, and may provide new insights into age-associated reproductive senescence during human aging.
منابع مشابه
Olfaction Modulates Reproductive Plasticity through Neuroendocrine Signaling in Caenorhabditis elegans
Reproductive plasticity describes the ability of organisms to adjust parameters such as volume, rate, or timing of progeny production in order to maximize successful reproduction under different environmental conditions. Reproductive plasticity in response to environmental variation has been observed in a wide range of animals; however, the mechanisms involved in translating environmental cues ...
متن کاملParadoxical delay of senescence upon depletion of BRCA2 in telomerase‐deficient worms
BRCA2 is a multifunctional tumor suppressor involved in homologous recombination (HR), mitotic checkpoint regulation, and telomere homeostasis. Absence of Brca2 in mice results in progressive shortening of telomeres and senescence, yet cells are prone to neoplastic transformation with elongated telomeres, suggesting that BRCA2 has positive and negative effects on telomere length regulation alon...
متن کاملEvolution in eggs and phases: experimental evolution of fecundity and reproductive timing in Caenorhabditis elegans
To examine the role of natural selection in fecundity in a variety of Caenorhabditis elegans genetic backgrounds, we used an experimental evolution protocol to evolve 14 distinct genetic strains over 15-20 generations. We were able to generate 790 distinct genealogies, which provided information on both the effects of natural selection and the evolvability of each strain. Among these genotypes ...
متن کاملIn Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence
While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techn...
متن کاملCaenorhabditis elegans reproductive aging: Regulation and underlying mechanisms.
Female reproductive decline is one of the first aging phenotypes in humans, manifested in increasing rates of infertility, miscarriage, and birth defects in children of mothers over 35. Recently, Caenorhabditis elegans (C. elegans) has been developed as a model to study reproductive aging, and several studies have advanced our knowledge of reproductive aging regulation in this organism. In this...
متن کامل